EXPLICACION DE UN MODELO MATEMATICO REAL
Un modelo matemático es una representación simplificada, a través de ecuaciones, funciones o fórmulas matemáticas, de un fenómeno o de la relación entre dos o más variables. La rama de las matemáticas que se encarga de estudiar las cualidades y estructura de los modelos es la llamada “teoría de los modelos”.
¿Para qué sirve un modelo matemático?
Los modelos matemáticos son utilizados para analizar la relación entre dos o más variables. Pueden ser utilizados para entender fenómenos naturales, sociales, físicos, etc. Dependiendo del objetivo buscado y del diseño del mismo modelo pueden servir para predecir el valor de las variables en el futuro, hacer hipótesis, evaluar los efectos de una determinada política o actividad, entre otros objetivos.
Elementos básicos de un modelo matemático
Los modelos matemáticos pueden variar en cuanto a su complejidad, pero todos ellos tienen un conjunto de características básicas:
- Variables: Son los conceptos u objetos que se busca entender o analizar. Sobre todo con respecto a su relación con otras variables. Así por ejemplo, una variable puede ser el salario de los trabajadores y lo que queremos analizar son sus principales determinantes (por ejemplo: años de estudio, educación de los padres, lugar de nacimientos, etc.).
- Parámetros: Se trata de valores conocidos o controlables del modelo.
- Restricciones: Son determinados límites que nos indican que los resultados del análisis son razonables. Así por ejemplo, si una de las variables es el número de hijos de una familia, una restricción natural es que este valor no puede ser negativo.
- Relaciones entre las variables: El modelo establece una determinada relación entre las variables apoyándose en teorías económicas, físicas, químicas, etc.
- Representaciones simplificadas: Una de las características esenciales de un modelo matemáticos es la representación de las relaciones entre las variables estudiadas a través de elementos de las matemáticas tales como: funciones, ecuaciones, fórmulas, etc.